功率分析仪和电机驱动分析仪

三相功率分析 - 电气、机械和控制分析

静态-动态-完整 静态-动态-完整
矢量、谐波、dq0 矢量、谐波、dq0
机械 机械
概述/比较 概述/比较
用途/应用 用途/应用
资源 资源

三相功率和
控制分析

Teledyne LeCroy 电机驱动分析仪和我们的 8 通道, 12-bit 分辨率高精度度示波器平台采集信号并计算三相电气功率和机械功率。

  • 采集短时间或长时间的任何信号——一切都显示在同一个显示器上
  • 在您的工作台上计算三相电气功率和机械功率
  • 关联复杂的功率、控制和电机行为
  • 具有高带宽、高精度示波器的所有通用功能

示波器和功率分析仪合二为一

力科超越了功能简单、单一的“黑匣子”
功率分析仪和 4 通道示波器的局限

Teledyne LeCroy 将最好的一切集成到一台始终提供12bit分辨率的仪器中,完整覆盖三相电气功率和机械功率计算。

  • 多达 16 个模拟通道(16 个数字通道可选)——采集更多,了解更多
  • 同时捕获控制、传感器和功率信号,更快地关联问题
  • 一切都在一台仪器中,在一个显示器上显示有用的动态功率视图

通常限于 8 位分辨率——不足以进行准确的功率计算。 或者宣传的分辨率仅在降低带宽和采样率时才能达到——不足以进行控制分析。

  • 8 位分辨率使功率计算精度局限在 ~5%
  • 三相功率系统调试的通道有限
  • 主要仅用于控制系统调试

功率分析仪是一种专用的单一用途工具,只能捕获很短时间的低速功率波形,没有动态功率分析功能

  • 仅进行静态功率分析
  • 无控制调试能力
  • 低带宽、低采样率(5 MHz 带宽,典型值为 2 MS/s)

具有完整的静态和动态功率分析能力

力科以更低的成本提供比两个独立仪器更多的功能,功率计算
精确可到功率分析仪的 1% 以内,并提供有用的动态功率视图以帮助调试。

静态功率分析

功能类似于功率分析仪,可在短时间采集时快速更新

  • 数值表显示功率平均值
  • 谐波次数计算和矢量显示
  • 短采集波形显示,并且快速更新

动态功率分析

捕获长记录(捕获时间可到秒或分钟)并查看功率变化

  • 每周期波形揭示了详细的动态功率行为
  • Zoom+Gate 轻松定位动态行为
  • 功率分析仪不具备的功能

完备的测试能力

高带宽 12-bit 分辨率示波器平台捕获任何信号

  • 轻松关联控制、逆变器部分、功率和电机行为
  • 计算功率的速度与单个功率器件开关周期一样快
  • 一台仪器——所有信息显示在一台显示器上

三相静态功率分析

Teledyne LeCroy 的三相功率分析软件和 电机驱动分析仪可以像功率分析仪一样工作,并执行静态功率分析,总体精度可达到专用功率分析仪的 1% 以内。

数值表

  • 用户可配置的数值表最多可显示120 个值
  • 每周期计算的平均值汇总
  • 触摸表格值可获取更多详细信息
阅读应用笔记

谐波滤波、计算、显示

  • 基于 DFT 的精确频谱过滤
  • 标配全频谱或基频选择
  • 谐波选项增加谐波范围过滤、频谱显示和谐波次数表

矢量显示(可选)

  • 同时显示两个矢量图
  • 在动态事件期间Zoom+Gate到具体的位置
  • 可应用于矢量显示计算的谐波滤波器

三相动态功率分析

Teledyne LeCroy 的三相功率分析软件和 电机驱动分析仪可以捕获系统运行几秒钟到几分钟的信息,并提供动态功率变化的详细视图。

完整的测试能力

Teledyne LeCroy 超越了功能简单、单一的“黑盒”功率分析仪和用于基本嵌入式控制测试的4 或 8 通道示波器的局限。

矢量显示、谐波计算和 dq0 转换

可选功能为 Teledyne LeCroy 电机驱动分析仪以及带有三相功率分析软件选项的示波器增添更多功能。

矢量显示

  • 交流输入和驱动输出同时显示
  • 算术或向量求和计算
  • 与 Zoom+Gate 兼容以显示动态事件期间的矢量变化
  • 谐波滤波器可应用于矢量显示

谐波计算

  • 严谨的DFT软件方法精确分离谐波
  • 为谐波滤波器添加 Fundamental+N 和 Range 设置选项
  • THD 数值计算和每周期波形
  • 谐波表和多达 9 个频谱显示
阅读应用笔记

dq0 (Park) 和 αβγ (Clarke) 变换

  • 同时查看两个αβγ (Clarke) & dq0 (Park) 实时变换。
  • 角度传感器支持允许转子参考系转换
  • 重现控制系统对电机扭矩和速度的理解

全面的机械速度、角度和扭矩接口支持

Teledyne LeCroy 电机驱动分析仪允许在实验台上测量速度、角度、扭矩和机械功率,
以及这些测量值与控制系统操作的相关性。

电机驱动分析仪支持九种不同的速度、四种不同的角度和五种不同的扭矩计算或传感器。 从其他数据推算速度和扭矩,并计算机械功率。

  • 正交编码器、脉冲转速计和无刷直流 (BLDC) 霍尔传感器支持速度计算
  • 从串行数据信号中提取速度和扭矩信息(串行数据 TDME 可选)
  • 将数字数据解释为模拟速度波形,就像直接探测信号一样

Teledyne LeCroy 电机驱动分析仪全面支持现代数字传感器,使用数字通道捕获数字传感器数据,并保留模拟通道以供其他使用。

  • 正交编码器、脉冲转速计和无刷直流 (BLDC) 霍尔传感器支持速度计算
  • 从串行数据信号中提取速度和扭矩信息(串行数据 TDME 可选)
  • 将数字数据解释为模拟速度波形,就像直接探测信号一样

多信号模拟输出传感器可轻松连接到电机驱动分析仪,用于计算速度和角度值并显示为连续波形。

  • 支持SinCos、解析器和 KMZ60 传感器
  • 计算电机轴瞬时角度值,应用角度跟踪观察滤波器
  • 将电机轴角校正为转子磁场角,并将 dq0 变换应用于转子参考系

三相电机功率分析解决方案
概述和比较

Teledyne LeCroy功率分析功能可以通过在一个 4 或 8 通道 12-bit 高分辨率示波器附加示波器软件选项 (THREEPHASEPOWER) 提供,
或专用的 电机驱动分析仪 (MDA).

模拟输入通道
数字输入通道
分辨率
带宽
一相功率分析
一相功率分析
机械功率分析
XY 轨迹
谐波计算选项
矢量显示选项
波形转换选项
显示两个电压和两个电流波形的软件应用程序屏幕图像,用于双瓦特计法功率计算
HDO6000B & WavePro HD 上的三相功率分析
4
16(在 -MS 型号上)
12 bits
350 MHz-8 GHz
(仅限 2 功率计方法)
---
---
(仅限αβγ和dq0)
软件应用程序屏幕图像显示了三个电压和三个电流波形的长时间捕获,其中包含缩放和三种功率计方法的功率计算。
WaveRunner 8000HD上的三相功率分析
8(16 个带 OscilloSYNC)
16(带 MSO 选项)
12 bits
350 MHz-2 GHz
---
---
(仅限αβγ和dq0)
8(16 个带 OscilloSYNC)
16(带 MSO 选项)
12 bits
350 MHz-2 GHz

电机驱动分析仪和三相功率分析
用途和应用

设计角色

  • 逆变器分部工程师
  • 控制系统工程师
  • 系统工程师

应用

  • 变频变速(VFD 和 VSD)电机驱动
  • - 交流感应电机 (ACIM)
  • - 无刷直流电机 (BLDC)
  • - 永磁同步电机 (PMSM)
  • 专为三相电源和电机驱动设计的集成电路
  • 工业自动化、运动控制和机器人设备
  • 电动汽车(汽车、卡车、公共汽车、电动自行车、摩托车、军用、轮船、飞机)
  • - DC-AC 推进逆变器和电机驱动器
  • - 车内DC-DC转换器
  • - DC-AC附件驱动器(交流压缩机、风扇、泵等)
  • 电梯、输送机、自动扶梯
  • 大型电器
  • 小家电
  • 电池供电工具(钻头、锯子、切割器)
  • 风能设备
  • 电池供电的草坪和园艺设备
  • 供暖、通风、空调 (HVAC) 系统
  • 机械工具
  • 备用发电机
  • 太阳能光伏逆变器
  • 不间断电源 (UPS)
  • 电网边缘输配电 (T&D) 设备

资源

文档名称
电机驱动分析仪数据表

描述电机驱动分析仪仪器进行三相电力和机械功率测量的功能和性能。

产品规格书
三相功率分析软件

描述特定 Teledyne LeCroy 示波器的三相电力分析软件选项的功能和性能

产品规格书
电机驱动技术入门 下载技术入门
比较三相功率测量仪器

本简介总结了如何正确比较 Yokogawa 的功率分析仪与 Teledyne LeCroy 电机驱动分析仪,并解释了两种仪器之间测量结果的任何差异。

阅读应用笔记
两瓦特计法三相功率计算,具有精确的线间到线间转换

使用这种方法,尽管三相总功率值是正确的,但从每对线电压和线电流对计算出的功率值不是同相或不平衡的。 准确的线间到线间转换有助于理解正确的三相系统操作。

阅读应用笔记
使用电机驱动分析仪测试交流感应电机驱动

传统的功率分析仪只为非常短的波形采集提供静态均值测量功能,Teledyne LeCroy 的电机驱动分析仪提供静态和动态功率分析以及较长的采集时间,以全面分析电机驱动的性能和效率。

阅读应用笔记
测试电池供电的无刷直流 (BLDC) 电机/驱动器

无刷直流电机及其相关驱动电路的全面表征和分析需要能够在动态事件期间查看波形并可视化随时间变化的测量结果。

阅读应用笔记
复杂的电机驱动和控制交互测试

电机驱动控制系统调试通常需要能够在动态事件期间同时查看控制和功率波形,以了解因果关系,并可视化随时间变化的动态功率行为,与控制活动相关。

阅读应用笔记
使用电机驱动分析仪检查车辆推进电机

模拟扭矩称重传感器和模拟转速计通常用于通过计算机械功率来测量扭矩和速度。 传统功率分析仪仅提供静态均值测量功能,但 Teledyne LeCroy 的电机驱动分析仪提供静态和动态功率分析以及用于综合分析的长采集时间。

阅读应用笔记
使用电机驱动分析仪进行小型电机效率测量

超过 90% 的电机和电机驱动设计涉及家用、商业或轻工业应用中使用的小型低功率电机和驱动器。 Teledyne LeCroy 电机驱动分析仪可以在工作台上测量这些小型电机的驱动和电机效率,而无需昂贵和/或稀缺的测功机。

阅读应用笔记
使用电机驱动分析仪进行交流输入动态功率和谐波分析

Teledyne LeCroy 电机驱动分析仪 (MDA) 动态测量每个周期的功率和谐波失真值,将它们绘制为波形,并允许轻松关联这些值以驱动交流输入波形。

阅读应用笔记
使用电机驱动分析仪在 DB-DTFC 中进行伏秒传感控制分析

无差拍直接转矩和磁通控制 (DB-DTFC) 是矢量 FOC 的替代方案,可实现快速转矩控制。 评估伏秒传感精度需要精确测量伏秒作为参考。 Teledyne LeCroy 的电机驱动分析仪在每个功率半导体开关周期内提供此类功能。

阅读应用笔记
使用电机驱动分析仪进行磨床每相电机分析

在每相的基础上了解完整的电机和驱动器电气操作有助于了解电机和驱动器如何随着负载条件的变化做出反应

阅读应用笔记
使用电机驱动分析仪进行六相电机分析

电机驱动分析仪从两个绕组组捕获电压和电流信号,测量总静态和动态功耗,并计算两个绕组组之间的平衡。

阅读应用笔记
使用电机驱动分析仪进行动态快速电机加速损耗测量

电机驱动分析仪用于测量动态(瞬态)损耗,以便更好地了解实际运行期间的电机和驱动效率。 此外,还计算了磁芯损耗和铜损,并将其与工程模型和驱动控制反馈电路进行了比较。

阅读应用笔记
使用电机驱动分析仪比较静态和动态电机损耗

Motor Drive Analyzer 用于计算以焦耳为单位的静态和动态能耗,并比较不同类型的电机和控制系统的结果。

阅读应用笔记
使用电机驱动分析仪分析可变磁通电机

电机驱动分析仪用于计算转子磁化期间极短时间内的功率,可变磁通电机的受控能量脉冲轨迹,以确保电机驱动和控制系统的正常运行

阅读应用笔记
将正交编码器接口 (QEI) 与电机驱动分析仪结合使用

电机驱动分析仪获取正交编码器接口 (QEI) A、B 和 Z 索引信号,并将它们转换为静态和动态电机轴速度和角度值

阅读应用笔记
将旋转变压器接口与电机驱动分析仪结合使用

电机驱动分析仪使用旋转变压器正弦、余弦和励磁频率信号来计算电机轴速度、角度和绝对位置。

阅读应用笔记
在电机驱动分析仪中使用 CAN 数字数据进行速度计算

Motor Drive Analyzer用于获取CAN数字数据,提取相关的电机速度数字信息,并将其转换为模拟电机速度值,显示为速度与时间波形。

阅读应用笔记
将 CA10 电流传感器适配器与 Danisense 磁通门电流传感器配合使用

描述了对 CA10 电流传感器适配器进行编程以将 Danisense 磁通门电流传感器连接到 Teledyne LeCroy 示波器或电机驱动分析仪的示例,结果以安培为单位正确缩放

阅读应用笔记
将 CA10 电流传感器适配器与 Pearson 电流互感器一起使用

描述了对 CA10 电流传感器适配器进行编程以将 Pearson 电流互感器连接到 Teledyne LeCroy 示波器或电机驱动分析仪的示例,结果以安培单位正确缩放。

阅读应用笔记
将 CA10 电流传感器适配器与 PEM-UK Rogowski 线圈一起使用

描述了对 CA10 电流传感器适配器进行编程以将 PEM-UK Rogowski 线圈连接到 Teledyne LeCroy 示波器或电机驱动分析仪的示例,结果以安培为单位正确缩放。

阅读应用笔记
将 CA10 电流传感器适配器与交流电流互感器一起使用

描述了对 CA10 电流传感器适配器进行编程以将交流电流互感器连接到 Teledyne LeCroy 示波器或电机驱动分析仪的示例,结果以安培单位正确缩放。

阅读应用笔记
电源转换海报
线路电压、电流、功率 - 基础知识海报

网络研讨会系列——三相电源和电机大师

该系列专注于使用 8 通道高分辨率示波器或电机驱动分析仪测量高功率、三相和电机逆变器和驱动系统。 了解静态和动态测量,从交流线路到逆变器开关到驱动输出到电机机械输出功率。

全部注册
第 1 部分 - 如何测量逆变器死区时间和输入/输出功率

我们描述了用于测量栅极驱动信号和器件输出的死区时间以确保实现裕度的技术。 我们还评估了简化的单相 DC-AC 逆变器的输入和输出功率。

第 2 部分 – 如何执行静态和动态功耗分析

我们描述了静态和动态功率分析之间的差异,以及如何优化每种分析的设置和测量。 将特别注意动态功率趋势的可视化以及这些趋势与获取的电压和电流波形的相关性。

第 3 部分 – 如何将控制事件与电源事件相关联

我们回顾了使用计算的每周期功率波形来验证和调试控制系统操作以实现功率部分行为的示例。

第 4 部分 – 如何在伏秒和其他短功率周期内测量功率

我们回顾了在相当于设备开关时间的功率周期内计算的功率示例。 这对于理解无差拍直接转矩和磁通控制所需的瞬时控制响应时间特别有帮助

第 5 部分 – 如何执行交流输入和逆变器/驱动器输出谐波分析

我们演示了如何对交流线路(50 或 60 Hz)输入和可变频率输出上的可变频率波形执行总谐波失真 (THD) 和谐波分析。

第 6 部分 – 如何测量电机机械速度、扭矩和功率

我们重点介绍如何使用电机驱动分析仪使用各种模拟、数字和串行数据传感器测量电机机械轴速度、扭矩和角度。

电力电子探测——使用什么以及为什么?

电力电子设计具有固有的测量挑战。 有许多专门的高低压单端和差分探头可以满足这个市场的特定需求。 然而,正确选择和使用探头对于操作员、设备和 DUT 的安全至关重要,并且对测量精度也有很大影响。

全部注册
第 1 部分 - 如何选择正确的高压探头

在本次网络研讨会中,我们将讨论如何选择正确的高压探头,同时考虑操作员、设备和 DUT 的应用和安全。 “正确”探头和“错误”探头之间的区别通常不是非黑即白,而是更多的是灰色阴影。

第 2 部分 – 高压探头实际示例和比较

在本次网络研讨会中,我们提供了许多实际应用示例和探头比较,以突出每种高压探头类型的优缺点在不同应用示例中的实际影响。

电源的基本原理:电压、电流和功率——从交流线路到 PWM

了解交流公用电源电压和额定值,以及伏特、安培、RMS、真有效值、瓦特、VA、VAR、功率因数和相角、三角形和星形三相电气系统的含义以及测量挑战。

测量电机性能:使用功率分析仪和示波器

在本次网络研讨会中,我们将讨论调试完整电机驱动嵌入式控制和电源系统时遇到的测量挑战。

功率转换基础——从半导体器件到复杂驱动器

了解用于桥梁和驱动器的功率半导体类型。 我们将回顾它们如何在各种不同的单设备、半桥、全桥(H 桥)和级联 H 桥拓扑中创建脉宽调制 (PWM) 输出。

 
MDA 8000HD 简介和概述
mda8000hd-静态
静态功率分析
mda8000hd-完整
完整的测试范围
mda8000hd-矢量显示
矢量显示选项
mda8000高清动态
动态功率分析
mda8000hd-机械
全面的机械接口
mda8000hd-谐波
谐波计算选项

需要帮助或信息?

请填写此表格,让我们知道您是否愿意 订阅活动快讯,同 销售人员联系, 或者 索取方案演示